
© 2010 Bennett, McRobb and Farmer 1

Moving into Design

Based on Chapter 12

Bennett, McRobb and Farmer

Object Oriented Systems Analysis
and Design Using UML

4th Edition, McGraw Hill, 2010

2© 2010 Bennett, McRobb and Farmer

In This Lecture You Will Learn:

• The difference between analysis and
design

• The difference between logical and
physical design

• The difference between system and
detailed design

• The characteristics of a good design
• The need to make trade-offs in design

3© 2010 Bennett, McRobb and Farmer

How is Design Different
from Analysis?

• Design states ‘how the system will be
constructed without actually building it’

(Rumbaugh, 1997)

• Analysis identifies ‘what’ the system must
do

• Design specifies ‘how’ it will do it

4© 2010 Bennett, McRobb and Farmer

How is Design Different
from Analysis?

• The analyst seeks to understand the
organization, its requirements and its
objectives

• The designer seeks to specify a system
that will fit the organization, provide its
requirements effectively and assist it to
meet its objectives

5© 2010 Bennett, McRobb and Farmer

How is Design Different
from Analysis?

• As an example, in the Agate case study:
– analysis identifies the fact that the Campaign

class has a title attribute

– design determines how this will be entered
into the system, displayed on screen and
stored in a database, together with all the
other attributes of Campaign and other
classes

6© 2010 Bennett, McRobb and Farmer

When Does Analysis Stop
and Design Start?

• In a waterfall life cycle there is a clear transition
between the two activities

• In an iterative life cycle the analysis of a
particular part of the system will precede its
design, but analysis and design may be
happening in parallel

• It is important to distinguish the two activities
and the associated mindset

• We need to know ‘what’ before we decide ‘how’

7© 2010 Bennett, McRobb and Farmer

2. To record the details of each
campaign for each client. This will
include the title of the campaign,
planned start and finish dates,
estimated costs, budgets, actual
costs and dates, and the current
state of completion.

Requirements Analysis Design

Campaign

title

campaignStartDate
campaignFinishDate

estimatedCost

completionDate

datePaid

actualCost

getCampaignAdverts()

addNewAdvert()

createNewCampaign()

getCampaignStaff()

assignStaff()

completeCampaign()

getCampaignCost()

recordPayment()

<<entity>>

Campaign

– actualCost : Currency
– adverts : Advert[]
– campaignFinishDate : Date
– campaignStaff : StaffMember[]
– campaignStartDate : Date
– client : Client
– completionDate : Date
– datePaid : Date
– estimatedCost : Currency
– manager : StaffMember
– title : String
– uniqueID : GUID

+ addNewAdvert(Advert)
+ assignStaff(StaffMember)
+ checkCampaignBudget() : Currency
+ completeCampaign()
+ getCampaignAdverts() : Advert[]
+ getCampaignCost() : Currency
+ getCampaignDetails() : String[]
+ getCampaignStaff() : StaffMember[]
+ getOverheads() : Currency
+ recordPayment(Currency)

Add a new
campaign

Campaign
Manager

CREATE TABLE Campaigns
(VARCHAR(30) uniqueID PRIMARY KEY NOT NULL,
FLOAT actualCost,
DATE campaignFinishDate,
DATE campaignStartDate,
VARCHAR(30) clientID NOT NULL,
DATE completionDate,
DATE datePaid,
FLOAT estimatedCost,
VARCHAR(30) managerID,
VARCHAR(50) title);

CREATE INDEX campaign_idx ON Campaigns (clientID, managerID, title);

8© 2010 Bennett, McRobb and Farmer

Traditional Design

• Making a clear transition from analysis to design
has advantages
– project management—is there the right balance of

activities?
– staff skills—analysis and design may be carried out

by different staff
– client decisions—the client may want a specification

of the ‘what’ before approving spending on design
– choice of development environment—may be delayed

until the analysis is complete

9© 2010 Bennett, McRobb and Farmer

Design in the Iterative Life Cycle

• Advantages of the iterative life cycle include
– risk mitigation—making it possible to identify risks

earlier and to take action

– change management—changes to requirements are
expected and properly managed

– team learning—all the team can be involved from the
start of the project

– improved quality—testing begins early and is not
done as a ‘big bang’ with no time

10© 2010 Bennett, McRobb and Farmer

Seamlessness

• The same model—the class model—is used
through the life of the project

• During design, additional detail is added to the
analysis classes, and extra classes are added to
provide the supporting functionality for the user
interface and data management

• Other diagrams are also elaborated in design
activities

11© 2010 Bennett, McRobb and Farmer

Logical and Physical Design

• In structured analysis and design a
distinction has been made between logical
and physical design

• Logical design is independent of the
implementation language and platform

• Physical design is based on the actual
implementation platform and the language
that will be used

12© 2010 Bennett, McRobb and Farmer

Logical and Physical
Design Example

• Some design of the user interface classes can
be done without knowing whether it is to be
implemented in Java, C++ or some other
language-types of fields, position in windows

• Some design can only be done when the
language has been decided upon — the actual
classes for the types of fields, the layout
managers available to handle window layout

13© 2010 Bennett, McRobb and Farmer

Logical and Physical Design

• It is not necessary to separate these into
two separate activities

• It may be useful if the software is to be
implemented on different platforms

• Then it will be an advantage to have a
platform-independent design that can be
tailored to each platform

14© 2010 Bennett, McRobb and Farmer

Model Driven Architecture

• Note the MDA Initiative
– Generate platform-specific models (PSMs)

from platform-independent models (PIMs)

This is discussed in more detail in Chapter 13

15© 2010 Bennett, McRobb and Farmer

System Design
and Detailed Design

• System design deals with the high level
architecture of the system
– structure of sub-systems

– distribution of sub-systems on processors

– communication between sub-systems

– standards for screens, reports, help etc.

– job design for the people who will use the
system

16© 2010 Bennett, McRobb and Farmer

System Design
and Detailed Design

• Traditional detailed design consists of four
main activities
– designing inputs

– designing outputs

– designing processes

– designing files and database structures

17© 2010 Bennett, McRobb and Farmer

System Design
and Detailed Design

• Traditional detailed design tried to
maximise cohesion
– elements of module of code all contribute to

the achievement of a single function

• Traditional detailed design tried to
minimise coupling
– unnecessary linkages between modules that

made them difficult to maintain or use in
isolation from other modules

18© 2010 Bennett, McRobb and Farmer

System Design
and Detailed Design

• Object-oriented detailed design adds detail to
the analysis model
– types of attributes

– operation signatures

– assigning responsibilities as operations

– additional classes to handle user interface

– additional classes to handle data management

– design of reusable components

– assigning classes to packages

19© 2010 Bennett, McRobb and Farmer

Enterprise Architecture

System Architecture

System Design

Detailed Design

Alignment of IT architecture to business strategy and structure, and existing IT

Meeting users’ requirements and determining the high-level structure of the system

Assig n sta ff
to wo rk o n

a c amp aign

Campaign
Mana ger

Ad d a n ew
ad ver t to

a c amp aign

Check camp aign
bu dget

Fin d campaig n

Accoun tant

su mmary

Pr int cam pa ig n

in voice

«inclu de»

«exte nd» «e xtend »

Pr int c amp aign

« include »

«in clude»

 Campai gn Ma nagement

Assig n sta ff
to wo rk o n

a c amp aign

Campaign
Mana ger

Ad d a n ew
ad ver t to

a c amp aign

Check camp aign
bu dget

Fin d campaig n

Accoun tant

su mmary
Pr int campa ig n

in voice

«inclu de»

«exte nd» «e xtend »

Pr int c amp aign

« include »

«in clude»

 Campai gn Ma nagement

Assig n sta ff
to wo rk o n

a c amp aign

Campaign
Mana ger

Ad d a n ew
ad ver t to

a c amp aign

Check camp aign
bu dget

Fin d campaig n

Accoun tant

su mmary

Pr int cam pa ig n

in voice

«inclu de»

«exte nd» «e xtend »

Pr int c amp aign

« include »

«in clude»

 Campai gn Ma nagement

Agate Control Server

Agate Domain

Agate Database

Agate Boundary

Agate Control Client

Agate Business
Objects

Agate Value
Objects

callSe
rversendRequestpackData

:
C
l
i
e
n
t

sd Broker-based client–server communication

:
C
l
i
e
n
t
S
i
d
e
P
r
o
x
y

:
B
r
o
k
e
r

:
S
e
r
v
e
r
S
i
d
e
P
r
o
x
y

:
S
e
r
v
e
r

sendRequest findServer

requestService unpackData

service

packData
response

sendResponse
sendResponse

unpackData

response

Choosing technologies and frameworks, setting standards, and applying patterns

Designing user interfaces, interactions, classes, data storage

:CheckCampaign
BudgetCheckCampaignBudget

:CheckCampaign
BudgetUI

ccbUI :=
CheckCampaignBu
dgetUI

:ListClients
ListClients

listAllClients(ccbUI)

addClientName(name)

enable

sd
Check
campa
ign
budget

loop
[For all
clients]

CheckCamp
aign
BudgetUI(
this) lc := ListClients

disableCheckButton

disableCampaignList

Global
Catalogue

Local Data
Catalogues

DataData

Agate Boundary Agate Control Client

Agate Entity

CheckCampaignBudgetUI CheckCampaignBudgetClient

Agate Control Server

ListCampaignsListClients

CheckCampaignBudgetServer

Agate Domain

Agate Data Management

ControllerFactory

CampaignClient

Advert

AdvertBroker

CampaignBrokerClientBroker

RelationalBroker

«interface»
ClientLister

+ addClientName(String)
+ clearAllClientNames()
+ removeClientName(String)

CheckCampaignBudgetUI

«use»

ListCampaigns

+ enable()
+ enableCheckButton()
+ getSelectedClient()
+ getSelectedCampaign()
+ setBudget(Currency)
+ addCampaignName(String)
+ clearAllCampaignNames()
+ removeCampaignName(String)
+ addClientName(String)
+ clearAllClientNames()
+ removeClientName(String)
+ itemStateChanged(ItemEvent)

+ listAllCampaigns(CampaignLister)
+ listCampaigns(CampaignLister, Client)

«interface»
CampaignLister

+ addCampaignName(String)
+ clearAllCampaignNames()
+ removeCampaignName(String)

ListClients

+ listAllClients(ClientLister)

«use»

«interface»
java::awt::event::ItemListener

+ itemStateChanged(ItemEvent)

- clientLabel : JLabel

- campaignLabel : JLabel

- budgetLabel : JLabel

- checkButton : JButton

- closeButton : JButton

- budgetTextField : JTextField

- clientComboBox : JComboBox

- campaignComboBox : JComboBox

20© 2010 Bennett, McRobb and Farmer

Qualities of
Design

Reusable

Usable

Maintainable

Manageable

Buildable

General

Flexible

Secure

Reliable

Economical

Efficient

Functional

Agate
Design

21© 2010 Bennett, McRobb and Farmer

Qualities of Design

• Functional—system will perform the functions
that it is required to

• Efficient—the system performs those functions
efficiently in terms of time and resources

• Economical—running costs of system will not be
unnecessarily high

• Reliable—not prone to hardware or software
failure, will deliver the functionality when the
users want it

22© 2010 Bennett, McRobb and Farmer

Qualities of Design

• Secure—protected against errors, attacks and
loss of valuable data

• Flexible—capable of being adapted to new uses,
to run in different countries or to be moved to a
different platform

• General—general-purpose and portable (mainly
applies to utility programs)

• Buildable—Design is not too complex for the
developers to be able to implement it

23© 2010 Bennett, McRobb and Farmer

Qualities of Design

• Manageable—easy to estimate work involved
and to check of progress

• Maintainable—design makes it possible for the
maintenance programmer to understand the
designer’s intention

• Usable—provides users with a satisfying
experience (not a source of dissatisfaction)

• Reusable—elements of the system can be
reused in other systems

24© 2010 Bennett, McRobb and Farmer

Prioritizing Design Trade-offs

• Designer is often faced with design
objectives that are mutually incompatible.

• It is helpful if guidelines are prepared for
prioritizing design objectives.

• If design choice is unclear users should be
consulted.

25© 2010 Bennett, McRobb and Farmer

Trade-offs in Design

• Design to meet all these qualities may produce
conflicts

• Trade-offs have to be applied to resolve these

• Functionality, reliability and security are likely to
conflict with economy

• Level of reliability, for example, is constrained by
the budget available for the development of the
system

26© 2010 Bennett, McRobb and Farmer

Trade-offs in Design

• Design objectives may conflict with constraints
imposed by requirements

• The requirement that the system can be used in
different countries by speakers of different
languages will mean that designers have to
agree a list of all prompts, labels and messages
and refer to these by some system of naming or
numbering

• This increases flexibility and maintainability but
increases the cost of design

27© 2010 Bennett, McRobb and Farmer

Measurable Objectives in
Design

• In Chapter 6, non-functional requirements
were described

• How can we tell whether these have been
achieved?

• Measurable objectives set clear targets for
designers

• Objectives should be quantified so that
they can be tested

28© 2010 Bennett, McRobb and Farmer

Measurable Objectives in
Design

• To reduce invoice errors by one-third
within a year

• How would you design for this?

29© 2010 Bennett, McRobb and Farmer

Measurable Objectives in
Design

• To reduce invoice errors by one-third
within a year

• How would you design for this?
– sense checks on quantities

– comparing invoices with previous ones for the
same customer

– better feedback to the user about the items
ordered

30© 2010 Bennett, McRobb and Farmer

Measurable Objectives in
Design

• To process 50% more orders at peak
periods

• How would you design for this?

31© 2010 Bennett, McRobb and Farmer

Measurable Objectives in
Design

• To process 50% more orders at peak
periods

• How would you design for this?
– design for as many fields as possible to be

filled with defaults

– design for rapid response from database

– design system to handle larger number of
simultaneous users

32© 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned about:

• The difference between analysis and design

• The difference between logical and physical
design

• The difference between system and detailed
design

• The characteristics of a good design

• The need to make trade-offs in design

33© 2010 Bennett, McRobb and Farmer

References

• More detail about design is provided in
Chapters 13 to 18

• In particular, Chapter 14 covers Class
Design

(For full bibliographic details, see Bennett,
McRobb and Farmer)

34© 2010 Bennett, McRobb and Farmer

References

• Rumbaugh et al (1991)

• Yourdon (1994)

• Jacobson et al. (1995)

• Meyer (1997)

• Somerville (2007)

• Pressman (2009)

(For full bibliographic details, see Bennett,
McRobb and Farmer)

